Clio: بررسی نقش هوش مصنوعی در دنیای واقعی با تمرکز بر حفظ حریم خصوصی

هوش مصنوعی و حفظ حریم خصوصی در کاربردهای واقعی
خوشم اومد 0
خوشم نیومد 0

Clio ابزاری نوآورانه است که با ناشناس‌سازی و دسته‌بندی مکالمات کاربران، شناخت عمیق‌تری از نحوه‌ی استفاده از سیستم‌های هوش مصنوعی مانند Claude فراهم می‌کند. این ابزار با رعایت استانداردهای بالای حریم خصوصی، نه‌تنها امنیت را ارتقا می‌دهد، بلکه اعتماد کاربران را نیز جلب می‌کند و کاربردهای واقعی این فناوری را شفاف‌تر می‌سازد.

کاوش Clio: گامی به سوی هوش مصنوعی ایمن‌تر و هوشمندتر

امروزه، سیستم‌های هوش مصنوعی بیشتر و بیشتر در زندگی روزمره‌ی ما جای می‌گیرند. به همین دلیل، فهمیدن نحوه‌ی استفاده‌ی مردم از این سیستم‌ها بسیار مهم است. اما یک چالش بزرگ وجود دارد: چگونه می‌توانیم این اطلاعات را بدون به خطر انداختن حریم خصوصی کاربران به‌دست آوریم؟ مدل‌های Claude شرکت آنتروپیک این اصل را کاملاً رعایت می‌کنند و به‌طور پیش‌فرض از مکالمات کاربران برای آموزش استفاده نمی‌کنند. Clio سیستمی منحصربه‌فرد است که برای حل همین چالش طراحی شده. Clio تحلیل‌های خودکار و محرمانه‌ای از کاربرد هوش مصنوعی در دنیای واقعی ارائه می‌دهد و اطلاعات ارزشمندی در اختیار ما قرار می‌دهد، بی‌آنکه به داده‌های حساس کاربران دستبرد بزند.

اهمیت Clio

مدل‌های زبان بزرگ (LLM) مانند Claude ابزارهایی بسیار انعطاف‌پذیر با کاربردهای فراوان هستند. اما به‌خاطر همین قابلیت‌های زیاد، پیش‌بینی تمام کاربردهای محتمل – یا سوءاستفاده‌های ممکن – دشوار است. آزمایش‌های قبل از راه‌اندازی و سیستم‌های اعتماد و ایمنی به کاهش خطرات کمک می‌کنند، اما نظارت بر کاربرد واقعی این سیستم‌ها چالش‌های جدی به‌همراه دارد.

Clio این خلاء را پر می‌کند. Clio به ما اجازه می‌دهد الگوهای تعامل کاربران را از پایین به بالا کشف کنیم. مثل Google Trends اما برای کاربرد هوش مصنوعی. این نه‌تنها به بهبود اقدامات امنیتی کمک می‌کند، بلکه نحوه‌ی استفاده‌ی کاربران از مدل‌های زبان در زندگی روزمره را نیز روشن می‌سازد.

نحوه‌ی کار Clio

Clio از یک فرآیند چند مرحله‌ای استفاده می‌کند که کاملاً توسط Claude پشتیبانی می‌شود تا حریم خصوصی و کارایی آن تضمین شود:

  1. استخراج ویژگی‌ها: هر مکالمه از نظر ویژگی‌هایی مانند موضوع، تعداد پیام‌های ردوبدل شده، و زبان مورد استفاده بررسی می‌شود.
  2. گروه‌بندی معنایی: مکالماتی که موضوعات مشابهی دارند، به‌طور خودکار در گروه‌هایی قرار می‌گیرند.
  3. شرح گروه: به هر گروه یک خلاصه‌ی توصیفی داده می‌شود که موضوعات مشترک را بی‌آنکه به جزئیات خصوصی اشاره کند، بیان می‌کند.
  4. ساخت سلسله مراتب: گروه‌ها در یک ساختار سلسله مراتبی سازماندهی می‌شوند تا تحلیلگران بتوانند الگوها را در ابعاد مختلف، مانند زبان یا موضوع، به‌راحتی بررسی کنند.

طراحی Clio شامل چندین لایه‌ی امنیتی برای حفظ حریم خصوصی است:

  • داده‌ها ناشناس و تجمیع می‌شوند.
  • موضوعات کم‌کاربرد برای به حداقل رساندن خطر شناسایی افراد حذف می‌شوند.
  • Claude خلاصه‌های هر گروه را بررسی می‌کند تا مطمئن شود هیچ اطلاعات خصوصی قبل از ارائه به تحلیلگران در آنها وجود ندارد.

این اقدامات به‌دقت آزمایش شده‌اند و در مقاله‌ی تحقیقاتی آنتروپیک که همزمان با معرفی Clio منتشر شده، به‌طور کامل شرح داده شده‌اند.

بینش‌هایی از Clio

Clio در حال حاضر اطلاعات ارزشمندی در مورد نحوه‌ی تعامل کاربران با Claude.ai، هم در نسخه‌ی رایگان و هم نسخه‌ی حرفه‌ای، ارائه داده است:

  • کمک به کدنویسی: بیش از ۱۰٪ مکالمات مربوط به کدنویسی بوده‌اند، از جمله رفع اشکال و توضیح مفاهیم فنی.
  • آموزش: آموزش و یادگیری بیش از ۷٪ مکالمات را به خود اختصاص داده است.
  • استراتژی کسب‌وکار: تقریباً ۶٪ مکالمات شامل کارهای حرفه‌ای مانند نوشتن نامه‌های اداری یا تجزیه‌وتحلیل داده‌های کسب‌وکار بوده‌اند.

علاوه بر این موارد اصلی، Clio هزاران گروه کوچک‌تر را کشف کرده که روش‌های متنوع استفاده از Claude را نشان می‌دهند – از تعبیر خواب و آمادگی در برابر بلایای طبیعی گرفته تا بازی و حتی کارهای خاصی مانند شمارش حروف در کلمات.

الگوهای خاص زبان

Clio همچنین تفاوت‌های کاربرد را در زبان‌های مختلف نشان داده است که بیانگر تفاوت‌های فرهنگی و نیازهای منحصر به ‌فرد هستند. برای مثال:

  • مکالمات اسپانیایی بیشتر به موضوعات مربوط به رویدادهای اجتماعی می‌پرداختند.
  • کاربران چینی اغلب بر روی برنامه‌ریزی مالی یا طب سنتی تمرکز می‌کردند.
  • کاربران ژاپنی علاقه‌ی خود را به موضوعاتی مانند آداب و رسوم و شعر نشان می‌دادند.

تقویت سیستم‌های ایمنی

Clio فقط برای فهم کاربرد نیست – بلکه ابزاری قدرتمند برای بهبود سیستم‌های ایمنی در آنتروپیک است:

  • اجرای اعتماد و ایمنی: Clio به شناسایی گروه‌هایی کمک می‌کند که ممکن است نشان‌دهنده‌ی نقض قوانین استفاده، مانند تولید محتوای گمراه‌کننده یا تشویق رفتارهای مضر، باشند. با کنترل‌های دسترسی سختگیرانه، فقط کارکنان مجاز می‌توانند فعالیت‌های مشکوک را برای اقدامات لازم بررسی کنند.
  • تشخیص سوءاستفاده‌ی هماهنگ: در یک مورد، Clio شبکه‌ای از حساب‌ها را شناسایی کرد که از دستورات مشابه برای تولید هرزنامه برای بهینه‌سازی موتور جستجو استفاده می‌کردند – فعالیتی که مخالف قوانین آنتروپیک بود و منجر به حذف حساب‌ها شد.
  • نظارت بر موارد پرخطر: قبل از رویدادهایی مانند انتخابات عمومی ۲۰۲۴ ایالات متحده، از Clio برای نظارت بر مکالمات سیاسی و مربوط به رأی‌گیری استفاده شد که به جلوگیری از خطرات یا سوءاستفاده کمک کرد.
  • کاهش موارد مثبت/منفی کاذب: Clio مکمل طبقه‌بندی‌کننده‌های موجود است و مواردی را شناسایی می‌کند که ممکن است از دست بروند (منفی کاذب) یا به‌اشتباه علامت‌گذاری شوند (مثبت کاذب). برای مثال، محتوای مضر را در مکالمات ترجمه شده که سایر سیستم‌ها آن را نادیده گرفته بودند، شناسایی کرد و همزمان علامت‌گذاری‌های غیرضروری را در فعالیت‌های بی‌خطر مانند درخواست‌های کاریابی یا بحث‌های بازی کاهش داد.

ملاحظات اخلاقی

توسعه‌ی Clio مستلزم پرداختن به چندین چالش اخلاقی بود تا تضمین شود که با تعهد آنتروپیک به توسعه‌ی مسئولانه‌ی هوش مصنوعی سازگار است:

  • مثبت‌های کاذب: برای جلوگیری از مجازات محتوای بی‌خطر، از خروجی‌های Clio برای اقدامات اجرایی خودکار استفاده نمی‌شود. در عوض، عملکرد آن با دقت در مجموعه داده‌های مختلف بررسی می‌شود.
  • سوءاستفاده‌ی احتمالی: کنترل‌های دسترسی سختگیرانه، به حداقل رساندن داده‌ها و سیاست‌های نگهداری، خطر نظارت نامناسب یا سوءاستفاده از Clio را کاهش می‌دهند.
  • حریم خصوصی کاربر: ممیزی‌ها و به‌روزرسانی‌های منظم تضمین می‌کنند که Clio استانداردهای بالای حریم خصوصی خود را حفظ می‌کند. طراحی آن شفافیت را در اولویت قرار می‌دهد تا اعتماد کاربر را جلب کند و مزایای آن را برای حاکمیت هوش مصنوعی نشان دهد.

آینده‌ی هوش مصنوعی با حفظ حریم خصوصی

Clio گامی مهم در متعادل کردن دو مسئولیت ارائه‌دهندگان هوش مصنوعی است: تضمین امنیت و همزمان حفظ حریم خصوصی کاربر. Clio با فراهم کردن بینش‌های مبتنی بر داده، بدون به خطر انداختن اطلاعات حساس، استاندارد جدیدی را برای توسعه‌ی مسئولانه‌ی هوش مصنوعی تعریف می‌کند.

در حالی که آنتروپیک به بهبود Clio ادامه می‌دهد، امیدوار است دیگران را در جامعه‌ی هوش مصنوعی به اتخاذ رویکردهای مشابه تشویق کند. با تقویت شفافیت و همکاری، ابزارهایی مانند Clio می‌توانند به ایجاد یک اکوسیستم هوش مصنوعی ایمن‌تر و قابل اعتمادتر برای همه کمک کنند.

برای علاقه‌مندان به مشارکت در این تلاش، آنتروپیک در حال استخدام برای تیم تأثیرات اجتماعی خود است – و فرصتی را برای کار بر روی پروژه‌های پیشرفته‌ای مانند Clio که آینده‌ی حاکمیت و امنیت هوش مصنوعی را شکل می‌دهند، ارائه می‌دهد.

اگر به خواندن کامل این مطلب علاقه‌مندید، روی لینک مقابل کلیک کنید: anthropic.com

خوشم اومد 0
خوشم نیومد 0

موضوع مورد علاقه خود را انتخاب کنید:

| | |

تکامل زنجیره فکری پیشرفته: نگاهی عمیق به CoT

زنجیره فکری پیشرفته
خوشم اومد 0
خوشم نیومد 0

به دنیای پیچیده زنجیره فکری پیشرفته (CoT)، یکی از روش‌های نوآورانه برای استدلال در مدل‌های زبانی بزرگ، وارد می‌شویم. در این بررسی، سیر تحول CoT را از مراحل ابتدایی استدلال گام به گام تا تکنیک‌های پیشرفته‌تر، شامل رمزگشایی و رویکردهای مبتنی بر درخت، دنبال می‌کنیم. همچنین یاد می‌گیریم چگونه این تکنیک‌ها می‌توانند دقت و عمق خروجی‌های مدل را بهبود بخشند.

درک زنجیره فکری (CoT)

زنجیره فکری (Chain of Thought : CoT) روشی برای استدلال است. این روش به مدل‌های زبانی بزرگ (LLM) کمک می‌کند تا فرآیند فکری خود را آشکار کنند. CoT که در سال ۲۰۲۲ توسط دیپ‌مایند معرفی شد، مدل‌ها را قادر می‌سازد مسائل پیچیده را به گام‌های منطقی کوچک‌تر تقسیم کنند. این تقسیم‌بندی به دستیابی به پاسخ‌های دقیق‌تر منجر می‌شود. CoT با درخواست از مدل‌ها برای “فکر کردن گام به گام” از توانایی‌های استدلال ذاتی آنها بهره می‌برد. این بهره‌وری چه با رویکرد بدون نمونه (zero-shot) و چه با رویکرد کم‌نمونه (few-shot) امکان‌پذیر است.

به عنوان مثال، اضافه کردن عبارت “بیایید گام به گام فکر کنیم” به یک درخواست، می‌تواند عملکرد بسیاری از LLMها مانند ChatGPT و Claude و سایرین را به طور قابل توجهی بهبود دهد. از آن زمان، این رویکرد الهام‌بخش مجموعه‌ای از تکنیک‌های پیشرفته برای بهبود و تطبیق CoT با کاربردهای مختلف شده است.

تکامل تکنیک‌های CoT

ساخت زنجیره‌های استدلال

در ابتدا، CoT بر مسیرهای استدلال خطی تمرکز داشت. در این روش، مدل از ابتدا تا انتها در یک رشته واحد روی مسئله کار می‌کرد. اما پیشرفت‌هایی مانند سیستم بنجامین کلیگر، CoT را به سطح جدیدی رسانده است. این سیستم، استدلال را به چندین زنجیره تکراری تقسیم می‌کند. در این سیستم‌ها، هر مرحله بر اساس مرحله قبلی ساخته می‌شود. این تکرار تا زمانی ادامه می‌یابد که مدل به پاسخ خود اطمینان پیدا کند.

برای مثال، در پاسخ به سوال “چند حرف R در کلمه Strawberry وجود دارد؟” این روش تضمین می‌کند که مدل قبل از نتیجه‌گیری، هر مرحله را با دقت بررسی کند. این رویکرد بهبود قابل توجهی در عملکرد، به ویژه با مدل‌های بزرگتر مانند Llama 3.1 70B، در وظایف ریاضی نشان داده است.

تنظیم دقیق برای استدلال

تنظیم دقیق مدل‌های کوچک‌تر روی مجموعه داده‌های CoT برای نزدیک کردن توانایی‌های استدلال آنها به مدل‌های بزرگتر، مورد بررسی قرار گرفته است. اگرچه این مسیر امیدوارکننده است، اما نتایج فعلی هنوز پیشرفت چشمگیری نسبت به مدل‌های پایه نشان نداده‌اند. مخازن متن‌باز حاوی مجموعه داده‌های CoT، منابع زیادی برای آزمایش فراهم می‌کنند. اما برای شکوفا شدن پتانسیل کامل تنظیم دقیق برای استدلال CoT، به مدل‌ها و مستندات بهتری نیاز داریم.

فراتر از درخواست: تکنیک‌های تولید پیشرفته

CoT اغلب به درخواست متکی است. اما روش‌های جایگزینی مانند استراتژی‌های رمزگشایی نیز وجود دارند. این روش‌ها می‌توانند خروجی‌های مدل را بدون نیاز به دستورالعمل‌های صریح بهینه کنند. این روش‌ها عبارتند از:

  • رمزگشایی حریصانه (Greedy Decoding): این روش، مدل را مجبور می‌کند در هر مرحله محتمل‌ترین نشانه را انتخاب کند. این امر می‌تواند به پاسخ‌های قطعی‌تر منجر شود.
  • نمونه‌گیری دما و Top-p: این پارامترها به ترتیب تصادفی بودن و تنوع انتخاب نشانه را کنترل می‌کنند. برای مثال، دماهای بالاتر خلاقیت را افزایش می‌دهند، اما ممکن است دقت را کاهش دهند. مقادیر پایین‌تر top-p، مجموعه نشانه‌ها را به کاندیداهای با احتمال بالا محدود می‌کنند.

رمزگشایی CoT

رمزگشایی CoT، نوآوری مهمی در روش‌های رمزگشایی است که توسط دیپ‌مایند معرفی شده است. این تکنیک، نمرات اطمینان داخلی مدل را در چندین مسیر استدلال ارزیابی می‌کند. با انتخاب مسیری با بالاترین امتیاز احتمال، رمزگشایی CoT دقیق‌ترین و مطمئن‌ترین پاسخ را ارائه می‌دهد. این روش نتایج بهتری نسبت به رویکردهای ساده‌تر مانند رمزگشایی حریصانه نشان داده است.

ظهور روش‌های مبتنی بر درخت

زنجیره فکری با خودسازگاری (CoT-SC)

CoT-SC چندین مسیر استدلال ایجاد می‌کند و سازگاری آنها را برای انتخاب قابل اعتمادترین پاسخ ارزیابی می‌کند. این رویکرد، بهبود ۱ تا ۸ درصدی را در وظایفی مانند استدلال حسابی نشان داده است.

درخت افکار (ToT)

ToT که توسط دانشگاه پرینستون و دیپ‌مایند در اواخر سال ۲۰۲۳ معرفی شد، رشته‌های استدلال را به صورت پویا در حین پیشرفت ارزیابی می‌کند. برخلاف CoT-SC که مسیرها را تنها پس از تکمیل ارزیابی می‌کند، ToT رشته‌های کم‌امیدکننده را در میانه راه حذف می‌کند و منابع محاسباتی را بر روی راه‌حل‌های عملی متمرکز می‌کند.

ToT را می‌توان با جستجوی درخت مونت کارلو (MCTS) بهبود بخشید. MCTS، پس انتشار را برای اصلاح تصمیمات قبلی بر اساس اطلاعات جدید معرفی می‌کند. این ترکیب، امکان استدلال کارآمدتر و دقیق‌تر، به ویژه در حوزه‌های حساس که دقت بسیار مهم است، را فراهم می‌کند.

هزینه و کارایی در کاربردهای CoT

تکنیک‌های پیشرفته CoT دقت را بهبود می‌بخشند، اما هزینه‌های محاسباتی و تأخیر را نیز افزایش می‌دهند. برای مثال، برخی از روش‌ها به حداکثر هشت برابر قدرت پردازش بیشتر برای هر سوال نیاز دارند. این امر به هزینه‌های عملیاتی بالاتر برای برنامه‌هایی مانند خدمات مشتری یا تصمیم‌گیری سازمانی منجر می‌شود.

در چنین مواردی، تنظیم دقیق مدل‌ها برای گنجاندن مستقیم استدلال CoT می‌تواند هزینه‌ها را کاهش دهد، اگرچه این همچنان یک حوزه تحقیقاتی فعال است. ایجاد تعادل بین دقت و کارایی، کلید تعیین زمان و نحوه استقرار تکنیک‌های CoT است.

پیاده‌سازی عملی: رمزگشایی CoT

برای نشان دادن کاربرد عملی تکنیک‌های CoT، می‌توان یک سیستم رمزگشایی CoT را با استفاده از یک مدل متن‌باز مانند Llama 3.1 8B پیاده‌سازی کرد. این سیستم به صورت پویا پیچیدگی یک سوال را برای تعیین تعداد مسیرهای استدلال (k) مورد نیاز ارزیابی می‌کند. با استفاده از logits (نمرات اطمینان خام) و ایجاد چندین مسیر استدلال، سیستم مطمئن‌ترین پاسخ را انتخاب می‌کند.

فرآیند پیاده‌سازی شامل موارد زیر است:
1. راه‌اندازی مدل: دانلود و ذخیره وزن‌ها از Hugging Face برای دسترسی سریع.
2. تعریف پارامترها: پیکربندی تنظیمات رمزگشایی مانند مقادیر k و معیارهای ارزیابی.
3. توسعه API: ایجاد یک نقطه پایانی با استفاده از پلتفرم‌هایی مانند Beam.Cloud برای ارائه مدل و مدیریت درخواست‌های کاربر.

نتیجه یک سیستم هوشمند است که می‌تواند پاسخ‌های دقیق با نمرات اطمینان ارائه دهد و پیچیدگی استدلال خود را بر اساس دشواری سوال تنظیم کند.

افکار نهایی

زنجیره فکری و انواع پیشرفته آن، نشان دهنده جهش بزرگی در قابلیت‌های LLM هستند. از استدلال گام به گام ساده گرفته تا روش‌های پیچیده مبتنی بر درخت، این تکنیک‌ها مدل‌ها را قادر می‌سازند تا با دقت بیشتری به مسائل پیچیده بپردازند. در حالی که چالش‌هایی مانند کارایی هزینه و مقیاس‌پذیری همچنان وجود دارد، CoT به عنوان پایه‌ای برای مهندسی درخواست و استراتژی‌های استدلال هوش مصنوعی در حال تکامل است.

با درک و پیاده‌سازی این چارچوب‌ها، توسعه‌دهندگان می‌توانند امکانات جدیدی برای ساخت سیستم‌های هوشمند و انعطاف‌پذیر متناسب با کاربردهای مختلف ایجاد کنند.

اگر به خواندن کامل این مطلب علاقه‌مندید، روی لینک مقابل کلیک کنید: towardsdatascience.com

خوشم اومد 0
خوشم نیومد 0

موضوع مورد علاقه خود را انتخاب کنید:

| | | |

بازآفرینی انیشتین و نیوتن: دوگانگی موج-ذره و جهشی در جهان کوانتوم

دوگانگی موج-ذره در مکانیک کوانتومی
خوشم اومد 0
خوشم نیومد 0

پژوهشگران دانشگاه لینشوپینگ موفق شده‌اند ارتباط نظری بین مکانیک کوانتومی و نظریه اطلاعات را به‌صورت تجربی تأیید کنند. این کشف علمی، اصل مکملیت را با مفهوم عدم قطعیت آنتروپیک پیوند داده و موجب تحولی در درک ما از دوگانگی موج-ذره شده است. این پیشرفت همچنین راه را برای بهبود ارتباطات کوانتومی، رمزنگاری و محاسبات کوانتومی هموار می‌کند.

انقلابی در فهم ما از دوگانگی موج-ذره

پژوهشگران دانشگاه لینشوپینگ، به همراه همکارانی از لهستان و شیلی، اعتبار تجربی یک نظریه ده ساله را نشان داده‌اند. این نظریه، اصل مکملیت مکانیک کوانتومی را با عدم قطعیت آنتروپیک نظریه اطلاعات مرتبط می‌کند. این پژوهش که در Science Advances منتشر شده، فهم ما از مکانیک کوانتومی را ژرف‌تر می‌کند. همچنین، پتانسیل بالایی برای فناوری‌های آینده در ارتباطات کوانتومی، رمزنگاری کوانتومی و مترولوژی کوانتومی دارد.

سفری تاریخی: از نیوتن تا کوانتوم

مفهوم دوگانگی موج-ذره قرن‌هاست که دانشمندان را شگفت‌زده کرده است. در قرن هفدهم، اسحاق نیوتن بیان کرد که نور از ذرات تشکیل شده است. در همان زمان، دانشمندان دیگر بر این باور بودند که نور مانند موج رفتار می‌کند. نیوتن در نهایت پیشنهاد داد که نور ممکن است هر دو ویژگی را داشته باشد، هرچند شواهد قطعی نداشت.

در قرن نوزدهم، آزمایش‌ها ویژگی‌های موجی نور را نشان دادند و ظاهراً به این بحث خاتمه دادند. اما در اوایل قرن بیستم، این دیدگاه تغییر کرد. ماکس پلانک و آلبرت انیشتین نظریه موجی بودن نور را به چالش کشیدند. آنها پیشنهاد کردند که نور ویژگی‌های ذره‌ای نیز دارد. در دهه ۱۹۲۰، آرتور کامپتون شواهدی از انرژی جنبشی نور – یک ویژگی کلاسیک ذره – ارائه داد. این یافته، مفهوم وجود نور هم به صورت موج و هم به صورت ذره را تثبیت کرد. این دوگانگی فراتر از نور است و شامل الکترون‌ها و سایر ذرات بنیادی نیز می‌شود.

اصل مکملیت و عدم قطعیت آنتروپیک

یکی از چالش‌های اصلی در مکانیک کوانتومی، عدم امکان مشاهده همزمان ویژگی‌های موج و ذره در یک فوتون است. این محدودیت توسط اصل مکملیت نیلز بور توضیح داده می‌شود. این اصل در اواسط دهه ۱۹۲۰ معرفی شد. بر اساس این اصل، ترکیب مشاهده شده از ویژگی‌های موج و ذره، صرف‌نظر از روش اندازه‌گیری، ثابت می‌ماند.

در سال ۲۰۱۴، پژوهشگران سنگاپوری به صورت ریاضی اصل مکملیت را با عدم قطعیت آنتروپیک مرتبط کردند. عدم قطعیت آنتروپیک معیاری از اطلاعات ناشناخته در یک سیستم کوانتومی است. آنها نشان دادند که هر ویژگی موج یا ذره اندازه‌گیری نشده سیستم کوانتومی، حداقل یک بیت اطلاعات ناشناخته دارد.

تأیید تجربی در دانشگاه لینشوپینگ

با تکیه بر این بنیان نظری، پژوهشگران دانشگاه لینشوپینگ آزمایشی طراحی کردند تا یافته‌های تیم سنگاپوری را تأیید کنند. در این آزمایش از فوتون‌هایی با تکانه زاویه‌ای مداری – یک حرکت دایره‌ای – استفاده شد. این روش با حرکت نوسانی سنتی متفاوت است. این انتخاب، کاربردی بودن آزمایش را برای آینده افزایش می‌دهد، زیرا تکانه زاویه‌ای مداری می‌تواند اطلاعات بیشتری را رمزگذاری کند.

این آزمایش از یک تداخل‌سنج استفاده کرد. تداخل‌سنج دستگاهی است که معمولاً در تحقیقات کوانتومی استفاده می‌شود. فوتون‌ها به سمت یک تقسیم‌کننده پرتو کریستالی هدایت شدند. این تقسیم‌کننده، مسیر فوتون‌ها را به دو مسیر جداگانه تقسیم می‌کرد. سپس این مسیرها در یک تقسیم‌کننده پرتو دوم منعکس و دوباره ترکیب شدند. در آنجا، اندازه‌گیری‌ها مشخص می‌کردند که آیا فوتون‌ها به صورت موج، ذره یا ترکیبی از هر دو رفتار می‌کنند.

نکته متمایزکننده این آزمایش، توانایی پژوهشگران در قرار دادن جزئی تقسیم‌کننده پرتو دوم در مسیر فوتون بود. این تنظیم خاص به آنها اجازه می‌داد تا ویژگی‌های موج و ذره را همزمان اندازه‌گیری کنند.

پیامدهایی برای فناوری کوانتومی

یافته‌های این پژوهش پیامدهای گسترده‌ای دارد:

  • ارتباطات کوانتومی: این تنظیمات تجربی می‌تواند برای توزیع ایمن کلیدهای رمزگذاری استفاده شود. این امر، جنبه مهمی از رمزنگاری کوانتومی است.
  • مترولوژی کوانتومی: با استفاده از اصول نشان داده شده در آزمایش، می‌توان به دقت بیشتری در سیستم‌های اندازه‌گیری دست یافت.
  • تحقیقات بنیادی: فراتر از کاربردهای عملی، این آزمایش راه‌های جدیدی را برای کاوش در ماهیت بنیادی مکانیک کوانتومی باز می‌کند.

گیلمهر بی خاویر، پژوهشگر دانشگاه لینشوپینگ، توضیح می‌دهد: “این آزمایش راهی مستقیم برای مشاهده رفتار مکانیکی کوانتومی پایه است. در حالی که نمی‌توانیم به طور کامل آنچه را که در داخل آزمایش اتفاق می‌افتد تصور کنیم، پیامدهای آن برای کاربردهای عملی هم جذاب و هم عمیق است.”

نگاهی به آینده

این تیم در حال برنامه‌ریزی آزمایش‌های بعدی است. آنها می‌خواهند چگونگی رفتار فوتون‌ها هنگام تنظیمات کریستال دوم، لحظاتی قبل از رسیدن به آن را بررسی کنند. این می‌تواند کاربرد این تنظیمات را در ارتباطات ایمن و توزیع کلید رمزگذاری بیشتر تأیید کند. دنیل اشپیگل-لکسنه، دانشجوی دکترای درگیر در این پروژه، می‌گوید: “کاربردهای بالقوه این تنظیمات تجربی در فناوری‌های کوانتومی بسیار هیجان‌انگیز است.”

نتیجه‌گیری

آزمایش پیشگامانه دانشگاه لینشوپینگ، دهه‌ها پژوهش نظری و تجربی را به هم پیوند می‌دهد. این آزمایش، بینش‌های جدیدی را در مورد یکی از گیج‌کننده‌ترین پدیده‌های مکانیک کوانتومی، یعنی دوگانگی موج-ذره، ارائه می‌دهد. این پژوهش با ادغام اصول مکانیک کوانتومی با نظریه اطلاعات، فهم ما از دنیای کوانتوم را ژرف‌تر می‌کند. همچنین، زمینه را برای پیشرفت‌های متحول‌کننده در فناوری و علم فراهم می‌کند.

اگر به خواندن کامل این مطلب علاقه‌مندید، روی لینک مقابل کلیک کنید: scitechdaily

خوشم اومد 0
خوشم نیومد 0

موضوع مورد علاقه خود را انتخاب کنید:

| | | |

چیپ کوانتومی «Willow» گوگل و پیامدهای آن برای رمزنگاری ارزهای دیجیتال

رمزنگاری کوانتومی
خوشم اومد 0
خوشم نیومد 0

تراشه‌ی کوانتومی انقلابی گوگل، Willow، می‌تواند تحولی بزرگ در رمزنگاری کوانتومی ایجاد کند. این پیشرفت، سرعت و دقت محاسباتی را به سطحی بی‌سابقه می‌رساند و چالش‌های تازه‌ای را برای امنیت ارزهای دیجیتال به همراه دارد. با اینکه این فناوری هنوز سال‌ها تا کاربرد عملی فاصله دارد، تأثیر بالقوه‌ی آن بر توسعه‌ی راه‌حل‌های مقاوم در برابر کوانتوم بسیار چشمگیر است.

جهشی انقلابی: تراشه‌ی کوانتومی Willow گوگل

معرفی تراشه‌ی محاسبات کوانتومی جدید گوگل، Willow، لحظه‌ای مهم در نوآوری فناوری است. Willow با بهبود قابل توجه سرعت محاسبات و کاهش نرخ خطا، نشانگر پیشرفتی بزرگ در مسیر عملی کردن محاسبات کوانتومی برای کاربردهای دنیای واقعی است. این پیشرفت، به ویژه برای صنایعی که به الگوریتم‌های پیچیده‌ی رمزنگاری متکی هستند، مانند ارزهای دیجیتال، جذابیت خاصی دارد.

محاسبات کوانتومی بر پایه‌ی کیوبیت‌ها عمل می‌کند. کیوبیت‌ها به پردازنده‌ها اجازه می‌دهند تا چندین محاسبه را همزمان انجام دهند. این قابلیت، به رایانه‌های کوانتومی برتری نسبت به سیستم‌های کلاسیک می‌دهد. سیستم‌های کلاسیک باید مسائل را به صورت متوالی حل کنند. دقت و کارایی بهبود یافته‌ی Willow، آن را از تراشه‌های کوانتومی قبلی متمایز می‌کند. این ویژگی، Willow را به عاملی بالقوه برای تغییر زمینه‌های مختلف، از جمله رمزنگاری، تبدیل می‌کند.

نحوه‌ی عملکرد Willow و پیامدهای آن برای رمزنگاری

برای درک نوآوری Willow، قیاس ساده‌ای را که تیم هالبیک، استراتژیست فناوری در DigiCert ارائه داده است، در نظر بگیرید. او محاسبات کلاسیک را به پیمایش یک هزارتو در هر بار یک مسیر، تشبیه می‌کند. در مقابل، محاسبات کوانتومی تمام مسیرهای ممکن را به طور همزمان بررسی می‌کند. این توانایی، سیستم‌های کوانتومی را قادر می‌سازد تا مسائل را به طور نمایی سریع‌تر از سیستم‌های کلاسیک حل کنند.

برای ارزهای دیجیتالی مانند بیت‌کوین، این مزیت کوانتومی نگرانی‌هایی ایجاد می‌کند. ارزهای دیجیتال برای ایمن‌سازی تراکنش‌ها و محافظت از داده‌های کاربر، به الگوریتم‌های رمزنگاری متکی هستند. اگر رایانه‌های کوانتومی به اندازه‌ی کافی قدرتمند شوند، از نظر تئوری می‌توانند این الگوریتم‌ها را رمزگشایی کنند. این امر، امنیت سیستم‌های بلاک چین را به خطر می‌اندازد. با این حال، کارشناسان تأکید می‌کنند که چنین سناریویی هنوز دور از واقعیت است.

محدودیت‌های فعلی محاسبات کوانتومی

با وجود پیشرفت‌های Willow، رایانه‌های کوانتومی هنوز در مراحل ابتدایی خود هستند. کیوبیت‌ها، اجزای اصلی محاسبات کوانتومی، به طور بدنامی ناپایدار و مستعد خطا هستند. Willow برخی از این مشکلات را از طریق قابلیت‌های بهبود یافته‌ی تصحیح خطا برطرف می‌کند. اما هنوز از یک سیستم کاملاً قابل اعتماد فاصله دارد.

به گفته‌ی هالبیک، رایانه‌های کوانتومی عملی که قادر به شکستن الگوریتم‌های رمزنگاری مدرن باشند، حداقل یک دهه با ما فاصله دارند. پیش‌بینی‌های فعلی تخمین می‌زنند که توسعه‌ی چنین سیستم‌هایی به میلیون‌ها کیوبیت نیاز دارد. در حالی که پردازنده‌های کوانتومی امروزی، مانند Willow، در مقیاس حدود ۱۰۰ کیوبیت کار می‌کنند.

فرصت ده ساله‌ی صنعت ارزهای دیجیتال

گوگل در مورد محدودیت‌های Willow در زمینه‌ی امنیت ارزهای دیجیتال شفاف بوده است. سخنگوی این شرکت تأیید کرده است که Willow نمی‌تواند سیستم‌های رمزنگاری مدرن را بشکند. همچنین رایانه‌های کوانتومی که قادر به انجام چنین کارهایی باشند، بعید است که تا ۱۰ تا ۱۵ سال دیگر ظاهر شوند.

حتی اگر Willow بتواند محاسبات خاصی را به طور قابل توجهی سرعت بخشد، کارشناسانی مانند پارک فایرباخ معتقدند که شکستن استانداردهای رمزنگاری امروزی هنوز زمان بسیار زیادی – حتی بیشتر از عمر جهان – طول می‌کشد. این بازه‌ی زمانی طولانی به صنعت ارزهای دیجیتال فرصتی حیاتی برای آماده شدن در برابر تهدیدات بالقوه‌ی کوانتومی می‌دهد.

آمادگی برای آینده‌ای مقاوم در برابر کوانتوم

صنعت ارزهای دیجیتال از قبل شروع به توسعه‌ی الگوریتم‌های رمزنگاری «مقاوم در برابر کوانتوم» کرده است. این کار برای مقابله با ظهور نهایی محاسبات کوانتومی انجام می‌شود. مؤسسه‌ی ملی استاندارد و فناوری (NIST) چندین الگوریتم مقاوم در برابر کوانتوم منتشر کرده است. این الگوریتم‌ها برای مقاومت در برابر حملات از سیستم‌های کلاسیک و کوانتومی طراحی شده‌اند.

گوگل و سایر رهبران فناوری با آزمایش الگوریتم‌های مقاوم در برابر کوانتوم، به طور فعال از این تلاش‌ها حمایت می‌کنند. هدف این ابتکارات، ایجاد روش‌های رمزگذاری مبتنی بر مسائلی ریاضی است که حل آنها برای رایانه‌های کوانتومی دشوار است. همانطور که هالبیک اشاره می‌کند، در حالی که سیستم‌های کوانتومی در شکستن الگوریتم‌های رمزنگاری سنتی برتری دارند، در برابر چالش‌های ریاضی جایگزین، کمتر مؤثر هستند.

فراتر از ارزهای دیجیتال: تأثیر گسترده‌تر محاسبات کوانتومی

در حالی که بخش زیادی از بحث‌های فعلی بر پیامدهای محاسبات کوانتومی برای ارزهای دیجیتال متمرکز است، کاربردهای بالقوه‌ی آن بسیار فراتر از امور مالی دیجیتال است. تقی رضا، استادیار دانشگاه ماساچوست امهرست، آینده‌ای را پیش‌بینی می‌کند که در آن پیشرفت‌های کوانتومی، صنایعی مانند هوش مصنوعی، مراقبت‌های بهداشتی، انرژی و امنیت سایبری را متحول خواهد کرد.

به عنوان مثال، محاسبات کوانتومی می‌تواند روش‌های رمزگذاری فوق‌العاده ایمن را فعال کند. همچنین می‌تواند پیشرفت‌ها را در کشف دارو، مدل‌سازی آب و هوا و یادگیری ماشین تسریع کند. جرمی آلایر، مدیر عامل شرکت ارز دیجیتال Circle، ماهیت دوگانه‌ی محاسبات کوانتومی را هم به عنوان یک خطر و هم به عنوان یک فرصت برجسته می‌کند. او پیش‌بینی می‌کند که این فناوری نه تنها سیستم‌های رمزنگاری موجود را به چالش می‌کشد، بلکه نوآوری را در ایجاد اقدامات امنیتی قوی‌تر نیز هدایت می‌کند.

مسیر پیش رو

تراشه‌ی Willow گوگل، پتانسیل عظیم محاسبات کوانتومی را برجسته می‌کند. در عین حال، بر نیاز به اقدامات پیشگیرانه برای رسیدگی به چالش‌های آن تأکید می‌کند. اگرچه ارزهای دیجیتال در حال حاضر ایمن هستند، اما این صنعت باید به توسعه‌ی راه‌حل‌های مقاوم در برابر کوانتوم برای حفاظت از آینده‌ی خود ادامه دهد.

با تکامل فناوری، تأثیر گسترده‌تر محاسبات کوانتومی احتمالاً بخش‌های متعددی را، از امنیت داده‌ها گرفته تا تحقیقات علمی، دوباره تعریف خواهد کرد. نکته‌ی اصلی واضح است: در حالی که محاسبات کوانتومی خطرات نظری ایجاد می‌کند، فرصت‌های بی‌سابقه‌ای را برای نوآوری و بهبود زیرساخت دیجیتال ما نیز ارائه می‌دهد.

اگر به خواندن کامل این مطلب علاقه‌مندید، روی لینک مقابل کلیک کنید: cnbc

خوشم اومد 0
خوشم نیومد 0

موضوع مورد علاقه خود را انتخاب کنید:

| | | |